Interpolation in nest algebra modules
نویسندگان
چکیده
منابع مشابه
Extreme points of norm closed nest algebra modules.
Suppose that U is a norm closed nest algebra module. Using the characterization of rank one operators in U perpendicular, a complete description of the extreme points of the unit ball U1 is given.
متن کاملThe Bourgain Algebra of a Nest Algebra
In analogy with a construction from function theory, we herein define right, left, and two-sided Bourgain algebras associated with an operator algebra A. These algebras are defined initially in Banach space terms, using the weak-* topology on A, and our main result is to give a completely algebraic characterization of them in the case where A is a nest algebra. Specifically, if A = algN is a ne...
متن کاملOn nest modules of matrices over division rings
Let $ m , n in mathbb{N}$, $D$ be a division ring, and $M_{m times n}(D)$ denote the bimodule of all $m times n$ matrices with entries from $D$. First, we characterize one-sided submodules of $M_{m times n}(D)$ in terms of left row reduced echelon or right column reduced echelon matrices with entries from $D$. Next, we introduce the notion of a nest module of matrices with entries from $D$. We ...
متن کاملPersistence modules: Algebra and algorithms
Abstract. Persistent homology was shown by Zomorodian and Carlsson [35] to be homology of graded chain complexes with coefficients in the graded ring k[t]. As such, the behavior of persistence modules — graded modules over k[t] — is an important part in the analysis and computation of persistent homology. In this paper we present a number of facts about persistence modules; ranging from the wel...
متن کاملOn Lie algebra crossed modules
The goal of this article is to construct a crossed module representing the cocycle 〈[, ], 〉 generating H(g; C) for a simple complex Lie algebra g.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Proceedings of the American Mathematical Society
سال: 2001
ISSN: 0002-9939,1088-6826
DOI: 10.1090/s0002-9939-01-06074-9